

CVCA1 – CRYO VOICE COIL ACTUATOR 1

Features

- Electromagnetic force actuator
- UHV compatible (completely sealed by welding)
- Contactless: no friction or wear
- Compact and robust design
- 5K to 375K operational range
- Dynamic operation
- Push-pull capacity
- Electrical connection via standard 1mm contacts
- Compatible with industrial motion controllers
- Coil to magnet alignment tool included

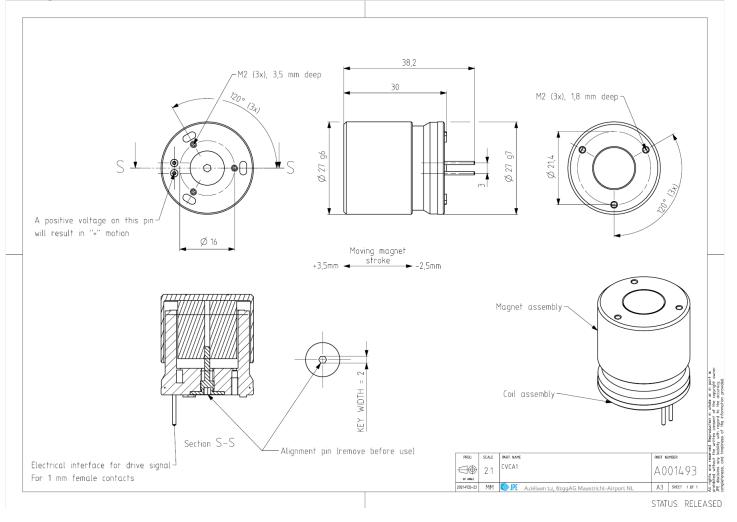
Description / Applications

The Cryo Voice Coil Actuator (CVCA) is an electromagnetic linear force actuator for cryogenic operation. The all-welded titanium construction with integrated power feedthrough pins hermetically encapsulates the coil making it also UHV compatible. The contactless nature of a voice coil actuator makes it especially suited for applications requiring smooth accurate positioning over the full stroke or for high lifetime applications like wafer probing.

General info						
Type of motion			Linear			
Dimensions			See drawings below			
Operational environmental conditions			5 K to 375 K, ambient to UHV			
Weight of coil assembly (stator)			419			
Weight of magnet assembly (mover)			48 g			
Max. allowable coil temperature			140 °C (180 °C wire specification)			
Motion						
Travel range			6 mm (-2,5 to +3.5)			
Radial clearance			0,35 mm both directions			
Materials						
Coil assembly			Titanium			
Magnet assembly			Magnetically soft steel and magnets, nickel plated			
Electromechanical characteristics 1)			10 K ²⁾	50 K	77 K	зоо К (air)
Coil resistance	R	Ohm	0,043	0,18	0,43	3,58
Voltage at peak force	V _{Fp}	V	0,09	0,35	0,81	7,06
Current at peak force	I _{Fp}	Α	2,08	1,92	1,88	1,5
Back EMF constant	k_{BEMF}	V/m/s	3,83	4,17	4,26	4
Coil inductance	L	mH	0,62 @ 100Hz			
Force sensitivity	k _f	N/A	3,83	4,17	4,26	4
Actuator constant	k _a	N/√W	18,47	9,81	6,43	2,07
Max continuous force ³⁾	F_{ss}	N	8	5	4,5	3
Peak force 4)	F_p	N	>8	>8	8	6
Power at peak force 5)	Pp	W	0,19	0,67	1,55	8,4
Power at max. continuous force ⁵⁾	P _{ss}	W	0,19	0,26	0,49	2,1
Power at 1N continuous force 5)	-	W	0,003	0,01	0,024	0,23
Electrical time constant 6)	τ_{E}	ms	14,4	3,44	1,44	0,17
Mechanical time constant 7)	τ_{M}	ms	0,14	0,5	1,14	10,7
Thermal resistance coil assembly ⁸⁾	R_{stator}	K/W	789	139	113	79
Thermal resistance magnet assembly ⁸⁾	R_{mover}	K/W	1,22	1,22	1,22	1,22
Electronics						
Controller/driver			Current amplifier			

¹⁾ At zero position, ²⁾ Actual initial coil temperature at 10 K tests was approx. 50 K because of thermal resistances, 10 K values from analysis. ³⁾ At 100 K coil temperature rise, ⁴⁾ Allowed for 10 seconds. Values \leq 50 K limited by used current amplifier. ⁵⁾ P = (F/ k_a)², ⁶⁾ L/R, ⁷⁾ (m_{mover}*R)/(k_f * k_{BEMF}), ⁸⁾ Theoretical from FEA. Coil assembly is based on radiation between windings and conduction through bobbin.

JPE


© JPE. Subject to change without notice. All data are outdated by any new release. JPE disclaims any liability with regard to the accuracy, completeness, and timeliness of the information provided.

Brochure date: 15 May 2023, page 1 of 2

Ordering Information					
Available models					
CVCA1-UHV	Cryo Voice Coil Actuator 1	Cryo Voice Coil Actuator 1			
Available Options					
None	Default delivery condition is	Default delivery condition is Ultra High Vacuum compatible			
Accessories					
None					
Mechanical and electrical information		Contact			
Download 3D step files and manuals from: https://www.jpe-innovations.com/cryo-nano-products/		For quotations, specials, or engineering services, please contact us at: https://www.jpe-innovations.com/contact/			

Drawings

V +31 (0) 43 3585 777

© JPE. Subject to change without notice. All data are outdated by any new release. JPE disclaims any liability with regard to the accuracy, completeness, and timeliness of the information provided. Brochure date: 15 May 2023, page 2 of 2