Hertz contact: Practical implementations

Construction Fundamentals

Introduction

Hertz contact properties like stiffness and stress can be predicted if the contact conditions are well known. Therefore the contact should not be over constrained: only “contact points” (in fact circular or elliptical shaped areas) are considered to be useful.

Generic – rules of thumb

  • Equivalent Young’s modulus: $E=\left(\frac{1-\nu_1^2}{2E_1}+\frac{1-\nu_2^2}{{2E}_2}\right)^{-1}$
  • Stiffness similar to: $C\sim\sqrt[3]{r}\sim\sqrt[3]{F}\sim\sqrt[3]{E^2}$
  • Trade-off between flat on flat (most stiff, high force capacity) and kinematically constrained designs (no over-constrained design, no hysteresis / micro slip).

Ball – rules of thumb

  • Ball contact area: circular (radius $a$).
  • For large stiffness use large radius, e.g. by using a segment instead of complete ball.

Convex roller – rules of thumb

  • Convex roller contact area: elliptical (half axes $a$ and $b$)
  • Keep convex roller radius ($R$) max 25 times larger than roller radius ($r$). Larger ratios imply a line contact and thus; over-constraining the contact.
  • For large stiffness use large roller radius $r$, e.g. by using a segment instead of complete roller.

Ball equations

$a=\sqrt[3]{\frac{3F_{local}r}{2E}}$

Circle radius

$\delta_{local}=\frac{a^2}{r}$ 

Approach

$\sigma_{av}=\frac{F_{local}}{\pi a^2}$ 

Average local stress

$\sigma_{max}=\frac{3F_{local}}{2\pi a^2}$ 

Maximum local stress

Convex roller equations

$\omega=\frac{R}{r} $ 

Radius-ratio < 25

$a=\omega^\frac{11}{24}\cdot\sqrt[3]{\frac{3F_{local}r}{2E}}$ 

Long half axis

$b=\omega^\frac{-4}{24}\cdot\sqrt[3]{\frac{3F_{local}r}{2E}}$ 

Short half axis

$\delta_{local}=\frac{1}{2}\left(\frac{a^2}{R}+\frac{b^2}{r}\right)$ 

Approach

$\sigma_{av}=\frac{F_{local}}{\pi ab}$ 

Average local stress

$\sigma_{max}=\frac{3F_{local}}{2\pi ab}$ 

Maximum local stress

On flat

Hertz Contact On Flat

$F_{local}=F_{axial}$

$\delta_{axial}{=\delta}_{local}$

$C_{axial\ ball}=\frac{F_{axial}}{\delta_{axial}}=\frac{rF_{axial}}{a^2}=\sqrt[3]{\frac{4}{9}rF_{axial}E^2}$

$C_{axial\ con.\ rol.\ }=\frac{F_{axial}}{\delta_{axial}}=\frac{2F_{axial}}{\left(\frac{a^2}{R}+\frac{b^2}{r}\right)}$
Note: these are the average stiffnesses. The local (or maximum) stiffness is:
$C_{axial\ local}=\frac{dF_{axial}}{d\delta_{axial}}=\frac{3}{2}\cdot C_{axial}$
In terms of maximum allowable stress the local stiffness is:
$C_{axial\ local}=\pi\cdot\sigma_{max}\cdot r$

$C_{tangential\ local}=\frac{2\left(1-\nu\right)}{2-\nu}C_{axial\ local} $

On v-slot (angle $\alpha$)

Hertz Contact On v-slot angle α

$F_{local}=\frac{F_{axial}}{2}\cdot\frac{1}{\sin{\left(\frac{\alpha}{2}\right)}} $

$\delta_{axial}=\delta_{local}\sin{\left(\frac{\alpha}{2}\right)}$

$C_{axial\ ball}=\frac{F_{axial}}{\delta_{axial}}=2\left(2\sin{\left(\frac{\alpha}{2}\right)}\right)^{-\frac{1}{3}}\cdot\sqrt[3]{\frac{4}{9}rF_{axial}E^2}$

$C_{axial\ con.\ rol.\ }=\frac{F_{axial}}{\delta_{axial}}=\frac{2F_{axial}}{\left(\frac{a^2}{R}+\frac{b^2}{r}\right)\sin{\left(\frac{\alpha}{2}\right)}} $
Note: these are the average stiffnesses. The local (or maximum) stiffness is:
$C_{axial\ local}=\frac{dF_{axial}}{d\delta_{axial}}=\frac{3}{2}\cdot C_{axial}$

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.