PRECISION POINT

Construction Design & Examples

LEAF SPRING/FLEXURE: REINFORCED

Flexures or leaf springs can be used for play and friction free motion. A downside is stiffness and to minimize the needed force, the flexures are made slender and thin. Smart reinforcement of flexures and leaf springs can help to keep the needed motion-force minimal while the flexure or leaf spring is made thicker, which is beneficial for its carrying stiffness and easier to manufacture which will decrease the manufacturing costs.

Design parameters

 $\lambda = \frac{L_s}{L} \qquad \gamma = \frac{t}{T}$ $0 < \lambda < \frac{1}{2} \qquad 0 < \gamma < 1$ $L_P = L_{RF} + L_s = (1 - \lambda)L$

Deformation characteristics

 $u_z = \frac{F_z}{C_z}$ $u_x = \frac{1}{2L(1-\lambda)}$ (s-shape deformation)

Stiffness for s- and c-shape deformation

$C_{\chi} = \frac{1}{2\lambda(1-\gamma)+\gamma} \cdot \frac{EUD}{L}$		
$C_y = \frac{1}{2\lambda(4\lambda^2 - 6\lambda + 3)(1 - \gamma) + \gamma}$	$\cdot \frac{Etb^3}{L^3}$	(s-shape deformation)
$C_y = \frac{1}{2\lambda(4\lambda^2 - 6\lambda + 3)(1 - \gamma) + \gamma}$	$\cdot \frac{Etb^3}{4L^3}$	(c-shape deformation)
$C_{z} = \frac{1}{2\lambda(4\lambda^{2} - 6\lambda + 3)(1 - \gamma^{3}) + \gamma}$	$\frac{Ebt^3}{L^3}$	(s-shape deformation)
$C_z = \frac{1}{2\lambda(4\lambda^2 - 6\lambda + 3)(1 - \gamma^3) + \gamma}$	$\frac{1}{\sqrt{3}} \cdot \frac{Ebt^3}{4L^3}$	(c-shape deformation)
$K_{\chi} = \frac{1}{2\lambda(1-\gamma^3)+\gamma^3} \cdot \frac{Gbt^3}{3L}$		
$K_{y} = \frac{1}{2\lambda(1-\gamma^{3})+\gamma^{3}} \cdot \frac{Ebt^{3}}{12L}$	(c-shape deformation)	
$K_{z} = \frac{1}{2\lambda(1-\gamma)+\gamma} \cdot \frac{Etb^{3}}{12L}$	(c-shape	e deformation)

Normalized stiffness increase due to reinforcement

The graphs shown below indicate the normalized stiffness increase with respect to the non-reinforced case ($\lambda = 0.5$).

IPF

1/1

L

S-shape deformation (top) and c-shape deformation (bottom) of a reinforced leaf spring with y-dimension b.

Force limits (buckling)

When a force in x-direction is applied buckling can occur, for equations to calculate the buckling load see Beam Theory: Buckling.

Design guidelines Keep $\frac{1}{10} < \lambda < \frac{1}{3}$ and $\frac{1}{10} < \gamma < \frac{1}{2}$ $\lambda = \frac{1}{6}$ and $\gamma = \frac{1}{5}$ Typical

Then:

$$C_x = 2.1 \cdot \frac{Etb}{L} \qquad \qquad K_x = 3.0 \cdot \frac{Gbt^3}{3L}$$

$$C_y = 1.3 \cdot \frac{Etb^3}{L^3} \text{(s-shape/c-shape)} \qquad K_y = 3.0 \cdot \frac{Ebt^3}{12L} \text{(c-shape)}$$

$$C_Z = 1.4 \cdot \frac{Ebt^3}{L^3} \text{(s-shape/c-shape)} \qquad K_z = 2.1 \cdot \frac{Etb^3}{12L} \text{(c-shape)}$$

Disclaimer:

The information in this document is correct to the best of our knowledge. The author and publisher disclaim any liability in connection with the use of this information.