PRECISION POINT

Actuators & Sensors

PIEZO STACKS: PHYSICS

Geometric properties

 $d_s[m]$ Layer thickness (typical 60-500 μ m) $n = \frac{L}{d_s}[-]$ Number of layers

Material Properties

$\rho = 7.8e3 \frac{kg}{m^3}$	Density
$E = 36e9 \frac{N}{m^2}$	Young's modulus
v = 0.34	Poisson ratio
$\xi = 0.1$	Damping constant

 $-271^{o}C < T < 150^{o}C$ Operating temperature

$$\varepsilon_{33} = 300 - 4000$$
 Dielectric constant (typical value = 1750)

$$d_{33} = 4e - 10 \frac{m}{v}$$
 Charge constant
 $HC = 350 \frac{J}{kg \cdot K}$ Spec. heat capacity

 $TC = 1.1 \frac{W}{m\kappa}$ Spec. thermal conductivity -20V < U < 120V Typical voltage

Mechanics

$\Delta L_{max} = \frac{L}{1000}$	Maximum displacement
$C_{axial} = \frac{EA}{L}$	Axial stiffness
$D = 2\xi \sqrt{C_{axial}m}$	Damping
$f_0 = \frac{1}{2\pi} \sqrt{\frac{C_{axial}}{m}}$	Resonance frequency
$t_{min} = \frac{1}{3f_0}$	Minimum rise time
$\varphi = 2 \arctan\left(\frac{f}{f_0}\right)$	Phase lag
$F_{blocking} = \Delta l_{max} \cdot C_{axial}$	Blocking force
$\sigma_{dynamic} = 15 MPa$	Preload for dynamic use
$\sigma_{static} = 30 MPa$	Preload for static use
4 – 20 %	Hysteresis

 $\Delta x_{creep}(t) = x \cdot 0.01 \cdot \log\left(\frac{t}{0.1}\right) \text{Creep} \textcircled{at [s]}$ $F_{pre \ tension} = \frac{1}{2} F_{blocking} \quad \text{Pre tension force}_{(\text{matching push-pull force})}$

Geometric characteristics of a Piezo stack.

Electronics $x = d_{33} \cdot L \cdot \frac{U}{d_s}$ Displacement (a) U [V] $\varepsilon_0 = 8.9e - 12 \frac{F}{m}$ Permittivity of free space $C_S = n \cdot \varepsilon_0 \cdot \varepsilon_{33} \cdot \frac{A}{d_s}$ Small signal capacitance
(typical for U < 100 V)</td> $C_L = 1.7 \cdot C_S$ Large signal capacitance
(typical for U > 100 V) $P = \frac{1}{2} \cdot f \cdot C \cdot U^2$ Average Polarization Power $E = \frac{1}{2} \cdot C \cdot U^2$ Polarization energy

Not generic for all frequency ranges, just for indication: $\tan \delta_U = 0.015 + 0.016 \sqrt{\frac{U}{|V|}}$ Loss factor @ U [V] $\tan \delta_T = 0.28 + 0.17 \cdot \ln \left(\frac{T}{|K|}\right)$ Loss factor @ T [K] $\tan \delta = \tan \delta_U + \tan \delta_T$ Loss factor $P_{heat} = P \cdot \tan \delta$ Heat generation

Disclaimer:

The information in this document is correct to the best of our knowledge. The author and publisher disclaim any liability in connection with the use of this information.