Dynamic model in state space

Dynamics & Control

Introduction

This sheet is to do a quick scan to the resonances of a desired transfer of a dynamic system via state space approach. From state space a bode-diagram can be created with appropriate software.

Equations of Motion (n-dimensional)

$\underline{M}\ \underline{\ddot{x}}+\underline{D}\ \underline{\dot{x}}+\underline{K}\ \underline{x}+\underline{F}=\underline{0}$ 
with $\underline{x}=\left[\begin{matrix}x_1&\ldots&x_n\\\end{matrix}\right]^T\rightarrow n\ x\ 1$

$\underline{M}=\left[\begin{matrix}m_1&0&0&0\\0&m_2&0&0\\0&0&\ddots&0\\0&0&0&m_n\\\end{matrix}\right]\rightarrow n\ x\ n$

$\underline{K}=\left[\begin{matrix}K_{11}&K_{12}&\ldots&K_{1n}\\K_{21}&K_{22}&\ldots&K_{2n}\\\vdots&\vdots&\ddots&\vdots\\K_{n1}&K_{n2}&\ldots&K_{nn}\\\end{matrix}\right]\rightarrow n\ x\ n$ 

$K_{i,j}\rightarrow K_{mi, xj} =$ Sum of all $c$ that work on $m_i$ if $x_j$ is moved*

$\underline{D}=\left[\begin{matrix}D_{11}&D_{12}&\ldots&D_{1n}\\D_{21}&D_{22}&\ldots&D_{2n}\\\vdots&\vdots&\ddots&\vdots\\D_{n1}&D_{n2}&\ldots&D_{nn}\\\end{matrix}\right]\rightarrow n\ x\ n$

$D_{i,j}\rightarrow D_{mi, xj} =$ Sum of all $d$ that work on $m_i$ if $x_j$ is moved*

* Check for $\underline{K}$ and $\underline{D}$: If all elements of row or column $I$ are summed the result is the stiffness or damping of mass $I$ in relation to the fixed world (see example). Furthermore these matrices are

$\underline{F}= external force \rightarrow n\ x\ 1$
(not composed of stiffness/dampers)

State Space form (SISO, n-dimensional, time independent)

$\underline{\dot{q}}=\underline{A}\underline{q}+\underline{B}u $
$y=\underline{C}\underline{q}+\underline{D}u$

State vector: $\underline{q}=\left[\begin{matrix}x_1&\ldots&x_n\\\end{matrix}\ \ \begin{matrix}{\dot{x}}_1&\ldots&{\dot{x}}_n\\\end{matrix}\right]^T\rightarrow2n\ x\ 1$

$u= input \rightarrow1\ x\ 1$ 
$u$ should be at least $\frac{d}{dt}$ , so no $x_i$, always a flux or a multiplication of fluxes with parameters (see example).

$y= output\rightarrow1\ x\ 1$ 
$y$ should be in the form $x_i$ or ${\dot{x}}_i$ and multiplications with parameters are possible but no double flux or higher fluxes (see example).

$\underline{A}=\left[\begin{matrix}\underline{0}_{nxn}&\underline{I}_{nxn}\\{\underline{M}}^{-1}\underline{K}&\underline{M}^{-1}\underline{D}\end{matrix}\right]→2n\ x\ 2n$ (system matrix)

$\underline{B}\rightarrow2n\ x\ 1$ is the input matrix; composition see examples
$\underline{C}\rightarrow2n\ x\ 1$ is the output matrix; composition see examples

This document assumes no feed forward so: $\underline{D}=\underline{0}$

Block diagram representation

Dynamic model in state space - Block diagram representation

Example

Dynamic model in state space - Block diagram representation - Example

$\underline{x}=\left[\begin{matrix}x_1&x_2\\\end{matrix}\right]^T$ so: $n=2 $

$\underline{M}=\left[\begin{matrix}m_1&0\\0&m_2\\\end{matrix}\right]$ with $m_0=0$

$\underline{K}=\left[\begin{matrix}-c_1-c_2&c_2\\c_2&-c_2-c_3\\\end{matrix}\right]$

$\underline{D}=\left[\begin{matrix}-d_1-d_2-d_3&d_2\\d_2&-d_2\\\end{matrix}\right]$

$\underline{F}= \left[{\ F}_1\ -F_2\right]$

$\underline{q}=\left[\begin{matrix}x_1&x_2&{\dot{x}}_1&{\dot{x}}_2\\\end{matrix}\right]^T$

$\underline{A}=\left[\begin{matrix}\begin{matrix}0&0\\0&0\\\end{matrix}&\begin{matrix}1&0\\0&1\\\end{matrix}\\{\underline{M}}^{-1}\underline{K}&{\underline{M}}^{-1}\underline{D}\\\end{matrix}\right]$ with $M^{-1}=\left[\begin{matrix}1/m_1&0\\0&1/\ m_2\\\end{matrix}\right]$

3 examples of inputs:
$u_1={\ddot{x}}_1$, $u_2=F_1$, $u_3={\dot{x}}_2-{\dot{x}}_1$

Thus;
${\underline{B}}_1=\left[\begin{matrix}0&0&1&0\\\end{matrix}\right]^T $
${\underline{B}}_2=\left[\begin{matrix}0&0&\frac{1}{m_1}&0\\\end{matrix}\right]^T$ 
${\underline{B}}_3=\left[\begin{matrix}-1&1&0&0\\\end{matrix}\right]^T$

3 examples of outputs:
$y_1={\dot{x}}_2$, $y_2=x_2-x_1$, $y_3=c_2\left(x_2-x_1\right)+d_2({\dot{x}}_2-{\dot{x}}_1)$

Thus;
${\underline{C}}_1=\left[\begin{matrix}0&0&0&1\\\end{matrix}\right]^T $
${\underline{C}}_2=\left[\begin{matrix}-1&1&0&0\\\end{matrix}\right]^T $
${\underline{C}}_3=\left[-\begin{matrix}c_2&c_2&-d_2&d_2\\\end{matrix}\right]^T$

$\underline{D}=\underline{0}$ 

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.