Fit plane through points

Engineering Fundamentals

Introduction

Method to derive a best fit a plane through number (≥ 3) XYZ data points, where the summed square errors of the data points in relation to the fit-plane in Z-direction is minimal.

Equation of a plane

$z\left(x,y\right)=A\cdot \ x+B\cdot \ y+C$

Data points

$\left[\begin{matrix}x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3\\&\vdots&\\x_n&y_n&z_n\\\end{matrix}\right]$

Coefficients of plane equation

$\left[\begin{matrix}A\\B\\C\\\end{matrix}\right]=\left[\begin{matrix}\sum_{i=1}^{n}x_i^2&\sum_{i=1}^{n}{x_iy_i}&\sum_{i=1}^{n}x_i\\\sum_{i=1}^{n}{x_iy_i}&\sum_{i=1}^{n}y_i^2&\sum_{i=1}^{n}y_i\\\sum_{i=1}^{n}x_i&\sum_{i=1}^{n}y_i&\sum_{i=1}^{n}1\\\end{matrix}\right]^{-1}\cdot\left[\begin{matrix}\sum_{i=1}^{n}{x_iz_i}\\\sum_{i=1}^{n}{y_iz_i}\\\sum_{i=1}^{n}z_i\\\end{matrix}\right]$

Tip / Tilt angles

$Rx=\arctan{\left[\frac{d}{dy}z\left(x,y\right)\right]}=\arctan{\left[B\right]}$

$Ry=\arctan{\left[-\frac{d}{dx}z\left(x,y\right)\right]}=\arctan{\left[-A\right]}$

Fit quality – Coefficient of determination = R2

$R^2=1-\frac{\sum_{i=1}^{i=n}\left(z_i-z\left(x_i,y_i\right)\right)^2}{\sum_{i=1}^{i=n}\left(z_i-\frac{1}{n}\sum_{i=1}^{n}z_i\right)^2}$

A value of $R^2$ which is close to 1 indicates a good fit quality.

Fit plane through points

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.