Hertz contact: Universal point

Engineering Fundamentals


Universal calculation of Hertz point contact between two arbitrarily curved bodies under load F and each body has radii in x and y direction of which the largest radius is called Ri and the smallest is called ri.

Hertz contact - Universal point


Young’s Modulus, Poisson ratio, small radius, large radius per body: $\ E,\nu,\ r,\ R$

Equivalent Young’s modulus

$E=\left(\frac{1-\nu_1^2}{2E_1}+\frac{1-\nu_2^2}{2E_2}\right)^{-1} $
Note: for metals $\nu\approx0.3$, so the equivalent Young’s modulus for metal on metal contact is:
$E\approx2.2\cdot\frac{E1\cdot E2}{E1+E2}$

Equivalent large radius

$R_i$ are the large radii of both bodies.
$R=\frac{R_1\cdot R_2}{R_1+R_2} $
Note: $R_i=\infty$ for flat surface; $R_i<0$ for hollow surface

Equivalent small radius

$r_i$ are the small radii of both bodies.
$r=\frac{r_1\cdot r_2}{r_1+r_2} $
Note: $r_i=\infty$ for flat surface; $r_i<0$ for hollow surface

Curvature ratio

Always ≥ 1.

Half long axis of contact ellipse

If 1 ≤ ω < 25:

if 25 < ω < 1e5:

Half short axis of contact ellipse

$b= 2^{-\frac{1}{3}}\cdot\omega^\frac{-4}{24}\cdot\left(\frac{3Fr}{E}\right)^\frac{1}{3}$

Approach of bodies


Average stress, Maximum stress

$\sigma_{av}=\frac{F}{\pi ab}$, $\sigma_{max}=\frac{3}{2}\frac{F}{\pi ab}$

Average stiffness

Only valid when $\omega=1$
$C_{av}=\frac{F}{\delta}=\sqrt[3]{\frac{4}{9}R\cdot F\cdot E^2}$

Local (maximum) stiffness

Only valid when $\omega=1$
$C_{local}=\frac{dF}{d\delta}=\frac{3}{2}C_{av}$ or $C_{local}=\pi\cdot\sigma_{max}\cdot r$ 

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.