Impact force

Engineering Fundamentals

Introduction

Bodies collide e.g. when play is present in the design. This collision causes elastic or plastic deformations to the colliding bodies.

Impact force

Collision Stiffness

If both are ‘rigid’ take the local Hertzian stiffness.
$c=\frac{C_1C_2}{C_1+C_2}$

Max. Collision Force

$F=v_0\sqrt{mc}$

Max. Approach

$u=v_0\sqrt{\frac{m}{c}}$

Deceleration Time

$t=\frac{\pi}{2}\sqrt{\frac{m}{c}} $

Deceleration to $v=0$

${a_{max}=-v}_0\sqrt{\frac{c}{m}}$
$a_{ave}=-\frac{v_0}{t}=-\frac{2}{\pi}v_0\sqrt{\frac{c}{m}}$

Collision of bodies

Differential Equation:
$m\ddot{x}+cx=0$
$x\left(t\right)=k_1\cos{\left(\sqrt{\frac{c}{m}}t\right)}+k_2\sin{\left(\sqrt{\frac{c}{m}}t\right)}$

Coefficients:
$x\left(0\right)=k_1=0$
$v\left(0\right)=k_2\sqrt{\frac{c}{m}}=v_0$ with $k_2=v_0\sqrt{\frac{m}{c}}$

Distance, velocity, and acceleration:
$x\left(t\right)=v_0\sqrt{\frac{m}{c}}\sin{\left(\sqrt{\frac{c}{m}}t\right)} $
$v\left(t\right)=v_0\cos{\left(\sqrt{\frac{c}{m}}t\right)}$
$a\left(t\right)={-v}_0\sqrt{\frac{c}{m}}\sin{\left(\sqrt{\frac{c}{m}}t\right)}$

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.