Piezo stacks: Physics

Actuators & Sensors

Introduction

Designing an actuator that utilizes a piezo stack as actuation principles is not trivial. To aid in this, this sheet elaborates on the parameters that are of interest for such a design. The behavior of a piezo stack can be summarized with the following properties:

  • Geometrical
  • Material
  • Mechanical
  • Electrical

Geometric properties

$A=H\cdot B\left[m^2\right]$

Cross section area

$d_s[m]$

Layer thickness (typical 60-500 µm)

$n=\frac{L}{d_s} [-]$

Number of layers

Material properties

$\rho=7.8e3\frac{kg}{m^3}$

Density

$E=36e9\frac{N}{m^2}$

Young’s modulus

$\nu=0.34$

Poisson ratio

$\xi=0.1$

Damping constant
(estimate)

$-{271}^oC<T<{150}^oC$ 

Operating temperature

$\varepsilon_{33}=300-4000$

Dielectric constant (typical value = 1750)

$d_{33}=4e-10\frac{m}{V}$ 

Charge constant

$HC=350\frac{J}{kg\cdot K}$ 

Spec. heat capacity

$TC=1.1\frac{W}{mK}$

Spec. thermal conductivity

$-20V<U<120V$

Typical voltage

Mechanics

$\Delta L_{max}=\frac{L}{1000}$

Maximum displacement

$C_{axial}=\frac{EA}{L}$

Axial stiffness

$D=2\xi\sqrt{C_{axial}m}$

Damping

$f_0=\frac{1}{2\pi}\sqrt{\frac{C_{axial}}{m}}$

Resonance frequency

$t_{min}=\frac{1}{3f_0}$

Minimum rise time

$\varphi=2\arctan{\left(\frac{f}{f_0}\right)}$

Phase lag

$F_{blocking}=\Delta l_{max}\cdot C_{axial}$

Blocking force

$\sigma_{dynamic}=15\ MPa$

Preload for dynamic use

$\sigma_{static}=30\ MPa$

Preload for static use

$4-20 \%$

Hysteresis

$\Delta x_{creep}\left(t\right)=x\cdot0.01\cdot\log{\left(\frac{t}{0.1}\right)}$ 

Creep @ t [s]

$F_{pre\ tension}=\frac{1}{2}F_{blocking}$

Pre tension force (matching push-pull force)

Piezo stacks
Geometric characteristics of a Piezo stack

Electronics

$x=d_{33}\cdot L\cdot\frac{U}{d_s}$

Displacement @ U [V]

$\varepsilon_0=8.9e-12\frac{F}{m}$

Permittivity of free space

$C_S=n\cdot\varepsilon_0\cdot\varepsilon_{33}\cdot\frac{A}{d_s}$

Small signal capacitance (typical for U < 100 V)

$C_L=1.7\cdot C_S$

Large signal capacitance (typical for U > 100 V)

$P=\frac{1}{2}\cdot f\cdot C\cdot U^2$

Average Polarization Power

$E=\frac{1}{2}\cdot C\cdot U^2$

Polarization energy

 

Not generic for all frequency ranges, just for indication:

$\tan{\delta_U}=0.015+0.016\sqrt{\frac{U}{\left[V\right]}}$

Loss factor @ U [V]

$\tan{\delta_T}=0.28+0.17\cdot\ln{\left(\frac{T}{\left[K\right]}\right)}$

Loss factor @ T [K]

$\tan{\delta}=\tan{\delta_U}+\tan{\delta_T}$

Heat generation

$P_{heat}=P\cdot\tan{\delta}$

Heat generation

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.