Sag compensated contact pin

Construction Design & Examples

Introduction

Typically struts and leaf springs demonstrate a parasitic sag-movement when moving sideways.

In some cases this parasitic motion is unwanted. Then a rigid tip can be implemented on the elastic element. By designing the proper tip radius, the parasitic motion can be perfectly compensated resulting in a straight-line guided motion.

Formulas

The kinematic behavior is described by the following formulas for small values of $u$, $\phi$

$z_{tip}=\left(L_r+L_f\right)-\frac{2}{15}\cdot\frac{2L_f^3+20L_r^2L_f+10L_rL_f^2+15L_r^3}{\left(2L_r+L_f\right)^2}\cdot\phi^2$

$\Delta z_{tip}=-\frac{2}{15}\cdot\frac{2L_f^3+20L_r^2L_f+10L_rL_f^2+15L_r^3}{\left(2L_r+L_f\right)^2}\cdot\phi^2$

$u_{tip}=\frac{2}{3}\cdot\frac{3L_rL_f+L_f^2+3L_r^2}{2L_r+L_f}\cdot\phi$

$L_p=\frac{u_{tip}}{\tan{\phi}}\approx\frac{u_{tip}}{\phi}=\frac{2}{3}\cdot\frac{3L_rL_f+L_f^2+3L_r^2}{2L_r+L_f}$

$z_{eff}=\left(L_r+L_f\right)+\left[\frac{R_{tip}}{2}-\frac{2}{15}\cdot\frac{2L_f^3+20L_r^2L_f+10L_rL_f^2+15L_r^3}{\left(2L_r+L_f\right)^2}\right]\cdot\phi^2$

$\Delta z_{eff}=\left[\frac{R_{tip}}{2}-\frac{2}{15}\cdot\frac{2L_f^3+20L_r^2L_f+10L_rL_f^2+15L_r^3}{\left(2L_r+L_f\right)^2}\right]\cdot\phi^2$

Special case 1: $L_r=0$ (cantilevered leaf spring / strut)

$L_p=\frac{2}{3}\cdot L_f$

$\left\{ \begin{matrix} \Delta z_{tip}=-\frac{4}{15}L_f \cdot\phi ^2 \\u_{tip}=\frac {2}{3}L_f \cdot\phi\\ \end{matrix} \right\} \Delta z_{tip}=-\frac{3}{5}\frac{u_{tip}^2}{L_f}$

Special case 2: $∆z_{eff}=0$

$R_{tip}=\frac{4}{15}\cdot\frac{2L_f^3+20L_r^2L_f+10L_rL_f^2+15L_r^3}{\left(2L_r+L_f\right)^2}$

Sag compensated contact pin
Kinematic behavior

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.