Spring shapes

Construction Fundamentals


Various shapes can be used as a spring to provide certain stiffness. Below several shapes are described. Also the stroke according to the maximum occurring stress in the particular shape is added; maximum stroke at yield stress.
$$\tau_{0.2}\approx0.4\cdot\sigma_{0.2} \textsf{ (JPE estimate for metals)}$$

Below materials are characterized with: $E,\sigma_{0.2},\nu$ 

Featured image spring shapes
Spring typeEquations
Buckled plate / wire spring
Buckled Plate Wire Spring
$F_{buckling}=\frac{\pi^2EI}{L^2}=\frac{\pi^2Ebt^3}{12L^2} $

$F_{buckling}=\frac{\pi^2EI}{L^2}=\frac{\pi^3Ed^4}{64L^2} $

$C\approx0$ (Constant force F)

$\delta\ s_{max}=\ (not\ known) $
Torsion wire spring
Torsion Wire Spring
$M=Fr $

$K=\frac{M}{\delta\varphi}=\frac{Ed^4}{64nD} $

$\delta\varphi=\frac{2\pi nD}{Ed}\sigma $
Spiral plate / wire spring
Spiral Plate Wire Spring
$M=Fr $

$K=\frac{M}{\delta\varphi}=\frac{Ebt^3}{12L} $

$K=\frac{M}{\delta\varphi}=\frac{\pi Ed^4}{64L} $

$\delta\varphi=\frac{2L}{Et}\sigma $

$\delta\varphi=\frac{2L}{Ed}\sigma $
Disc spring (DIN 2092)
Disc Spring DIN 2092*
$r_1=\frac{r_2}{2} $

$C=\frac{F}{\delta s}=\frac{Et^3}{0.69{r_2}^2\left(1-\nu^2\right)} $

$\delta s_{max}=h $
Compression / tension spring
Compression Tension Spring
$C=\frac{F}{\delta s}=\frac{d^4E}{16nD^3(1+\nu)} $

$\delta s=\frac{2\pi n D^2\left(1+\nu\right)}{dE}\tau $
Inclined compression spring
Inclined Compression Spring
$C=\frac{F}{\delta s}=\frac{d^4E}{32n(r_1+r_2)(r_1^2+r_2^2)(1+\nu)} $

$\delta s=\frac{2\pi n(r_1+r_2)(r_1^2+r_2^2)\left(1+\nu\right)}{dr_2E}\tau $
Ring plate / wire spring
Ring Plate Wire Spring
$C=\frac{F}{\delta s}=4.48\frac{Ebt^3}{D^3(1-\nu^2)} $

$C=\frac{F}{\delta s}=2.64\frac{Ed^4}{D^3(1-\nu^2)} $

$\delta s=\frac{\pi D^2}{13.44Et}\sigma$

$\delta s=\frac{\pi D^2}{13.44Ed}\sigma$
Plate / wire spring
Plate Wire Spring
$C=\frac{3EI}{L^3}=\frac{Ebt^3}{4L^3} $

$C=\frac{3EI}{L^3}=\frac{3\pi E\ d^4}{64L^3} $

$\delta s=\frac{4L^2}{3Et}\sigma $

$\delta s=\frac{4L^2}{3Ed}\sigma $

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.