Triangular body supported by tangential struts

Construction Fundamentals

Introduction

In many precision engineering solutions, flexure design with a frame configuration is used, where an equi-triangular body is supported by three tangentially oriented struts, to provide motion in $x$, $y$ and $R_z$. This sheet provides formulas for stiffness and displacement of the main body as function of the individual stiffness’s and displacements of the struts.

Strut stiffness

Assume each individual strut has a longitudinal $(c_L)$ and an out-of-plane Z-direction stiffness $(c_T)$ like depicted in the following sketch:

Strut stiffness
Triangular body in struts Complete

Mechanism stiffness

Assuming the typical case where ${c_1}_L=\ {c_2}_L=\ {c_3}_L=c_L$ and ${c_1}_T=\ {c_2}_T=\ {c_3}_T=c_T$, then the following stiffness’s can be derived for the mechanism:

XYZ coordinate system

$C_x=C_y=\frac{3}{2}\cdot c_L$
$C_z=3{\cdot c}_T$

$K_{Rx}=K_{Ry}={\frac{3}{2}}{\cdot c}_z\cdot R^2$
$K_{Rz}=3{\cdot c}_L\cdot R^2$

UVW coordinate system

$C_u=C_v={\frac{3}{2}}{\cdot c}_L$
$C_z=3{\cdot c}_T$

$K_{Ru}=K_{Rv}={\frac{3}{2}}{\cdot c}_z\cdot R^2$
$K_{Rw}=3{\cdot c}_L\cdot R^2$

Mechanism displacement

Displacements based on movement input $(s_1,s_2,s_3\ll\ R)$

XYZ coordinate system

$\left[\begin{matrix}x\\y\\R_z\\\end{matrix}\right]=\left[\begin{matrix}{\frac{2}{3}}&-{\frac{1}{3}}&-{\frac{1}{3}}\\0&{\frac{1}{3}}\sqrt3&-{\frac{1}{3}}\sqrt3\\{\frac{1}{3R}}&{\frac{1}{3R}}&{\frac{1}{3R}}\\\end{matrix}\right]\cdot\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]$

$\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]=\left[\begin{matrix}1&0&R\\-{\frac{1}{2}}&{\frac{1}{2}}\sqrt3&R\\-{\frac{1}{2}}&-{\frac{1}{2}}\sqrt3&R\\\end{matrix}\right]\cdot\left[\begin{matrix}x\\y\\R_z\\\end{matrix}\right]$

UVW coordinate system

$\left[\begin{matrix}u\\v\\R_w\\\end{matrix}\right]=\left[\begin{matrix}\cos{\left(\alpha\right)}&-\sin{\left(\alpha\right)}&0\\\sin{\left(\alpha\right)}&\cos{\left(\alpha\right)}&0\\0&0&1\\\end{matrix}\right]\cdot\left[\begin{matrix}x\\y\\R_z\\\end{matrix}\right]=\left[\begin{matrix}\cos{\left(\alpha\right)}&-\sin{\left(\alpha\right)}&0\\\sin{\left(\alpha\right)}&\cos{\left(\alpha\right)}&0\\0&0&1\\\end{matrix}\right]\cdot\left[\begin{matrix}{\frac{2}{3}}&-{\frac{1}{3}}&-{\frac{1}{3}}\\0&{\frac{1}{3}}\sqrt3&-{\frac{1}{3}}\sqrt3\\{\frac{1}{3R}}&{\frac{1}{3R}}&{\frac{1}{3R}}\\\end{matrix}\right]\cdot\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]$

$=\left[\begin{matrix}{\frac{2}{3}}\cdot\cos{\left(\alpha\right)}&-{\frac{1}{3}}\cdot{\left(\cos{\left(\alpha\right)}-\sqrt3\cdot\sin(\alpha)\right)}&-{\frac{1}{3}}\cdot{\left(\cos{\left(\alpha\right)}+\sqrt3\cdot\sin(\alpha)\right)}\\{\frac{2}{3}}\cdot\sin{\left(\alpha\right)}&-{\frac{1}{3}}\cdot{\left(\sin{\left(\alpha\right)}+\sqrt3\cdot\cos{(\alpha)}\right)}&-{\frac{1}{3}}\cdot{\left(\sin{\left(\alpha\right)}-\sqrt3\cdot\cos{(\alpha)}\right)}\\{\frac{1}{3R}}&{\frac{1}{3R}}&{\frac{1}{3R}}\\\end{matrix}\right]\cdot\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]$

$\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]=\left[\left[\begin{matrix}\cos{\left(\alpha\right)}&-\sin{\left(\alpha\right)}&0\\\sin{\left(\alpha\right)}&\cos{\left(\alpha\right)}&0\\0&0&1\\\end{matrix}\right]\cdot\left[\begin{matrix}{\frac{2}{3}}&-{\frac{1}{3}}&-{\frac{1}{3}}\\0&{\frac{1}{3}}\sqrt3&-{\frac{1}{3}}\sqrt3\\{\frac{1}{3R}}&{\frac{1}{3R}}&{\frac{1}{3R}}\\\end{matrix}\right]\right]^{-1}\cdot\left[\begin{matrix}u\\v\\R_w\\\end{matrix}\right]$

$\left[\begin{matrix}s_1\\s_2\\s_3\\\end{matrix}\right]=\left[\begin{matrix}\cos{\left(\alpha\right)}&\sin(\alpha)&{R}\\{\frac{1}{2}}\cdot{\left(-\sqrt3\cdot\sin{\left(\alpha\right)}-\cos{(\alpha)}\right)}&{\frac{1}{2}}\cdot{\left(\sqrt3\cdot\cos{\left(\alpha\right)}-\sin{(\alpha)}\right)}&{R}\\{\frac{1}{2}}\cdot{\left(\sqrt3\cdot\sin{\left(\alpha\right)}-\cos{(\alpha)}\right)}&{\frac{1}{2}}\cdot{\left(-\sqrt3\cdot\cos{\left(\alpha\right)}-\sin{(\alpha)}\right)}&{R}\\\end{matrix}\right]\cdot\left[\begin{matrix}u\\v\\R_w\\\end{matrix}\right]$

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.