Leaf spring/flexure: Reinforced

Construction Design & Examples

Introduction

Flexures or leaf springs can be used for play and friction free motion. A downside is stiffness and to minimize the needed force, the flexures are made slender and thin. Smart reinforcement of flexures and leaf springs can help to keep the needed motion-force minimal while the flexure or leaf spring is made thicker, which is beneficial for its carrying stiffness and easier to manufacture which will decrease the manufacturing costs.

Design parameters

$\lambda=\frac{L_s}{L_0}$

$0<\lambda<\frac{1}{2}$

$L_P=L_{RF}+L_s=\left(1-\lambda\right)L_0$

$\gamma=\frac{t}{T}$

$0<\gamma<1$

 

Deformation characteristics

$u_z=\frac{F}{C_z} $
$u_x=\frac{u_z^2}{2L_0\left(1-\lambda\right)}$

Stiffness for s- and c-shape deformation

$C_x=\frac{1}{2\lambda\left(1-\gamma\right)+\gamma}\cdot\frac{Etb}{L_0}$
$C_y=\frac{1}{2\lambda\left(4\lambda^2-6\lambda+3\right)\left(1-\gamma\right)+\gamma}\cdot\frac{Etb^3}{L_0^3}$ (s-shape deformation)
$C_y=\frac{1}{2\lambda\left(4\lambda^2-6\lambda+3\right)\left(1-\gamma\right)+\gamma}\cdot\frac{Etb^3}{4L_0^3}$ (c-shape deformation)
$C_z=\frac{1}{2\lambda\left(4\lambda^2-6\lambda+3\right)\left(1-\gamma^3\right)+\gamma^3}\cdot\frac{Ebt^3}{{L_0}^3}$ (s-shape deformation)
$C_z=\frac{1}{2\lambda\left(4\lambda^2-6\lambda+3\right)\left(1-\gamma^3\right)+\gamma^3}\cdot\frac{Ebt^3}{4{L_0}^3}$ (c-shape deformation)

$K_x=\frac{1}{2\lambda\left(1-\gamma^3\right)+\gamma^3}\cdot\frac{Gbt^3}{3L_0}$
$K_y=\frac{1}{2\lambda\left(1-\gamma^3\right)+\gamma^3}\cdot\frac{Ebt^3}{12L_0}$ (c-shape deformation)
$K_z=\frac{1}{2\lambda\left(1-\gamma\right)+\gamma}\cdot\frac{Etb^3}{12L_0}$ (c-shape deformation)

Leaf spring - Reinforced
Deformation of a reinforced leaf spring with y-dimension b.

Force limits (buckling)

Bucking will occur either in the flexure part ($L_s$) or in the reinforced part ($L_{rf}$).
$F_{x\ buckle\ flexure}=\frac{1}{12}\frac{\pi^2Ebt^3}{{L_s}^2} $
$F_{x\ buckle\ reinforced}=\frac{1}{12}\frac{\pi^2EbT^3}{{L_{RF}}^2} $
If $\lambda^2>\gamma^3\cdot\left(1-2\lambda\right)^2$ the flexure will buckle first else the reinforced part will buckle first.

Design guidelines

Keep $\frac{1}{10}<\lambda<\frac{1}{3}$ and $\frac{1}{10}<\gamma<\frac{1}{2}$

Typical $\lambda=\frac{1}{6}$ and $\gamma=\frac{1}{5}$

Then:
$C_x=2.1\cdot\frac{Etb}{L_0}$
$C_y=1.3\cdot\frac{Etb^3}{L_0^3}$
$C_Z=1.4\cdot\frac{Ebt^3}{L_0^3}$


$K_x=3.0\cdot\frac{Gbt^3}{3L_0}$
$K_y=3.0\cdot\frac{Ebt^3}{12L_0}$
$K_z=2.1\cdot\frac{Etb^3}{12L_0}$

$F_{x\ buckle}=\frac{1}{3}\frac{\pi^2Ebt^3}{\left(2L_s\right)^2}$

Normalized stiffness increase due to reinforcement

The graphs shown below indicate the normalized stiffness increase with respect to the non-reinforced case ($\lambda=0.5$).

Normalized stiffness of leaf spring/flexure reinforced

Tech Support

Please submit a message and we will come back to you on short notice.

Precision Point sheet download

Please fill in your details to receive the requested Precision Point sheet.

We use cookies to ensure to give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.